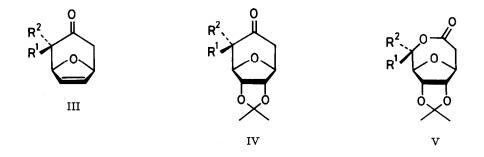
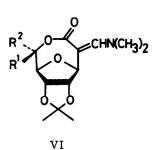
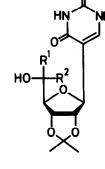

SYNTHESIS OF PSEUDOURIDINES MODIFIED AT THE C-5' POSITION

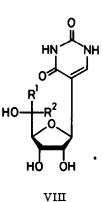
T. Sato, M. Watanabe, and R. Noyori*

Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan


We have recently developed an efficient route to members of <u>C</u>-nucleoside antibiotics starting from acetone and furan.¹ Use of the oxabicyclooctenone I as the key intermediate permits the perfect stereochemical control throughout the overall transformation that consists of elaboration of the ribofuranosyl skeleton and introduction of the nitrogen bases into the C-1' position. Because of the versatility of the reductive 3 + 4 cyclocoupling reaction between polybromo ketones and furans,² this method finds a wide synthetic flexibility. Here we describe the first, ready structural modification of pseudouridine (II) at the C-5' position.




The bicyclic ketone IIIa, prepared from 1, 1, 3-tribromo-3-methylbutan-2-one and furan,³ was converted with complete stereoselectivity to the α glycol acetonide IVa⁴ by the standard procedure (30% H₂O₂-cat. OsO₄/acetone-ether-tert-butyl alcohol, 25 °C, 12 h, and then p-TsOH--CuSO₄/acetone, 25 °C, 12 h, 59% yield). Subsequent Baeyer-Villiger oxidation with CF₃CO₃H (3 equiv, CH₂Cl₂-phosphate buffer, 25 °C, 6 h) led regiospecifically to the lactone Va⁵ in 81% yield, which was reacted with bis(dimethylamino)-tert-butoxymethane⁶ (6.5 equiv, DMF, 50 °C, 3 h) to afford VIa⁷ in 96% yield. Condensation of VIa with urea forming the uracil derivative VIIa⁸ was accomplished with 2.4 M ethanolic C₂H₅ONa in 48% yield. This product was homogeneous on thin-layer chromatography with several solvent systems. The β stereo-chemistry at the anomeric 1' position was confirmed by the NMR spectrum.⁹


treatment of VIIa (10% HCl in CH_3OH , 25 °C, 10 min) furnished 5', 5'-dimethylpseudouridine (VIIIa) in 97% yield. ^{12, 13} No pyranose derivative was formed by this deprotection procedure.

In a similar manner, the monoalkylated pseudouridines, VIIIb and VIIIc, as well as the phenyl substituted analogue VIIId¹⁴ were prepared from the corresponding bicyclic ketones, IIIb-d. In addition to the complete stereo- and regiochemical control, configurational relationship between the carbonyl α position in III and the 5' carbon of VIII is noteworthy. Since the chiral center created in the initial 3 + 4 cyclocoupling reaction³ remains intact during the transformation, the stereochemistry inherent in IIIb or IIIc, for example, led to 6'-deoxyallofuranosyl structures, VIIIb and VIIIc. Thus this approach provides a general method for the synthesis of pseudouridines possessing carbon substituent(s) and the 5' position.

VII

a,
$$R^{1} = R^{2} = CH_{3}$$

b, $R^{1} = CH_{3}$; $R^{2} = H$
c, $R^{1} = (CH_{2})_{4}CH_{3}$; $R^{2} = H$
d, $R^{1} = C_{8}H_{5}$; $R^{2} = H$

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Education, the Japanese Government (Grant-in-Aid, No. 311709 and 354169), and the Kurata Science Foundation.

REFERENCES AND NOTES

- <u>C</u>-Nucleoside Synthesis. IV. Part I: R. Noyori, T. Sato, and Y. Hayakawa, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>100</u>, 2561 (1978). Part II: T. Sato, R. Ito, Y. Hayakawa, and R. Noyori, <u>Tetra-hedron Lett.</u>, 1829 (1978). Part III: T. Sato and R. Noyori, <u>Bull. Chem. Soc. Japan</u>, in press.
- 2. Review: R. Noyori, Ann. N.Y. Acad. Sci., 295, 225 (1977).
- H. Takaya, S. Makino, Y. Hayakawa, and R. Noyori, <u>J. Am. Chem. Soc</u>., <u>100</u>, 1765 (1978). See also Part III of this series (ref. 1).
- 4. Mp 109.5-110 °C. IR (CHCl₃) 1709 cm⁻¹. NMR (CDCl₃, pseudouridine numbering) δ 1.11, 1.31, 1.34, and 1.50 (s, CH₃), 2.20 (d, H_{5a}), 2.91 (dd, H_{5b}), 4.02 (s, H₄), 4.44 (d, H₂), 4.52 (d, H₁), 4.60 (d, H₃); <u>J</u>_{1', 2'} = <u>J</u>_{1', 5a} = <u>J</u>_{3', 4'} = ca. 0 Hz, <u>J</u>_{1', 5b} = 6.0 Hz, <u>J</u>_{2', 3'} = 5.5 Hz, <u>J</u>_{5a, 5b} = 16 Hz. The stereochemical assignment was based on the vicinal coupling constants, <u>J</u>_{1', 2'} and <u>J</u>_{3', 4'}.
- 5. Mp 158.5-159.2 °C. IR (CHCl₃) 1730 cm⁻¹. NMR (CDCl₃, pseudouridine numbering) δ 1.34, 1.46, 1.50, and 1.56 (s, CH₃), 2.88 and 3.12 (dd, H_{5a} and H_{5b}), 4.10 (s, H₄), 4.33 (dd, H₁), 4.64 (d, H₂), 4.97 (d, H₃); $\underline{J}_{1', 2'} = \underline{J}_{3', 4'} = ca. 0$ Hz, $\underline{J}_{1', 5a} = 4.0$ Hz, $\underline{J}_{1', 5b} = 3.0$ Hz, $\underline{J}_{2', 3'} = 6.0$ Hz, $\underline{J}_{5a, 5b} = 17$ Hz.
- H. Bredereck, G. Simchen, S. Rebsdat, W. Kantlehner, P. Horn, R. Wahl, H. Hoffmann, and P. Grieshaber, <u>Chem. Ber.</u>, 101, 41 (1968).
- 7. A 70:30 mixture of the (<u>Z</u>)- and (<u>E</u>)-isomers. IR (CHCl₃) 1670, 1590 cm⁻¹. NMR (CDCl₃) δ 1.33, 1.44, 1.47, and 1.51 (s, CH₃), 2.93 and 3.14 (s, N(CH₃)₂, 30:70 ratio), 6.58 and 7.39 (s, C=CH, 30:70 ratio). UV λ_{max} (CH₃OH) 300 nm (log ϵ 4.20).
- 8. Mp 153.1-156.8 °C. NMR (pyridine- \underline{d}_5 , pseudouridine numbering) δ 1.41, 1.48, 1.53, 1.67 (s, CH₃), 4.12 (d, H₄), 5.08 (d, H₁), 5.30 (m, H₂, and H₃), 7.93 (s, H₆); $\underline{J}_{1', 2'} = \underline{J}_{3', 4'} = 3.7$ Hz. UV λ_{\max} (CH₃OH) 263 nm (log ε 3.72), λ_{\max} (0.1 N NaOH) 286 nm (3.73). TLC (silica gel, 7:1 CHCl₃-CH₃OH) \underline{R}_f 0.42.
- 9. The spectrum taken in pyridine- \underline{d}_5 gave the isopropylidene methyl signals at δ 1.41 and 1.67 ($\Delta\delta$ 0.26 ppm), indicating the β configuration of the uracil residue.¹⁰ The coupling constant, $\underline{J}_{3',4'} = 3.7$ Hz, also supported this assignment.¹¹
- 10. J. L. Imbach, Ann. N.Y. Acad. Sci., 255, 177 (1975).
- 11. H. Ohrui and S. Emoto, J. Org. Chem., 42, 1951 (1977).
- 12. Mp 221-225 °C. NMR (pyridine- \underline{d}_5) δ 1.53 and 1.57 (s, CH₃), 4.2-4.4 (m, H₃ and H₄), 5.12 (dd, H₂), 5.25 (d, H₁), 5.75 (br, OH), 8.00 (s, H₆); $\underline{J}_{1', 2'} = 6.5$ Hz, $\underline{J}_{2', 3'} = 5.0$

Hz, $\underline{J}_{3',4'} = 3.0$ Hz. UV λ_{\max} (CH₃OH) 212 (log ε 3.90), 263 nm (3.82), λ_{\max} (0.1 N HCl) 264 nm (3.92), λ_{\max} (0.1 N NaOH) 218 (3.92), 287 nm (3.80).

- 13. All compounds described herein are racemic. Stable compounds gave correct elemental analysis and/or exact mass spectral data.
- 14. VIIIb Mp 237-239 °C. NMR (dimethyl sulfoxide- \underline{d}_{6}) δ 1.06 (d, CH₃), 3.50 (m, H₄, and H₅,), 4.0 (m, H₂, and H₃), 4.37 (d, H₁), 7.70 (d, H₆), 10.87 (d, H₁), 11.08 (s, H₂); $\underline{J}_{1',2'} = \underline{J}_{5',CH_3} = \underline{J}_{1,6} = 6.0$ Hz. UV λ_{max} (CH₃OH) 264 nm (log ε 3.75), λ_{max} (0.1 N HCl) 263 nm (3.91), λ_{max} (0.1 N NaOH) 287 nm (3.93). VIIIc Mp 193-198 °C. NMR (pyridine- \underline{d}_{5}) δ 0.81 (t, CH₃), 1.1-1.9 (m, CH₂), 4.24 (m, H_{5'}), 4.54 (t-like, H_{4'}), 4.94 (dd, H_{3'}), 5.1-5.2 (m, H_{1'} and H_{2'}), 5.50 (m, OH and NH), 7.95 (s, H₆); $\underline{J}_{2',3'} = 4.3$ Hz, $\underline{J}_{4',5'} = 2.8$ Hz, $\underline{J}_{CH_3,CH_2} = 6.0$ Hz. UV λ_{max} (CH₃OH) 212 (log ε 3.93), 265 nm (3.84), λ_{max} (0.1 N HCl) 264 nm (3.74), λ_{max} (0.1 N NaOH) 217 (4.04), 286 nm (3.86). VIIId (wax) NMR (pyridine- \underline{d}_{5}) δ 4.90 (m, H_{4'} and H_{5'}), 5.24 (m, H_{2'} and H_{3'}), 5.47 (d, H_{1'}), 7.83 (s, H₆), 7.2-7.5 (m, C₆H₅); $\underline{J}_{1',2'} = 4.0$ Hz. The β configuration of the C-1' appendage was determined at the stage of the acetonides, VIIb-d, using the Imbach rule.¹⁰

(Received in Japan 4 August 1978)